

Ergebnisse der Kommunalen Wärmeplanung

Kommunale Wärmeplanung Gemeinde Rastede

Rastede, 28.04.2025

Aufgabenstellung Wärmeplanung

Hintergrund & Ergebnis

Agenda

- O1 Aufgabenstellung der Wärmeplanung Hintergrund & Ergebnis
- 02 Maßnahmen aus der Wärmeplanung Zentrale & Dezentrale Versorgungsgebiete
- O3 Ausblick
 Was sind die nächsten Schritte?

Ziel der kommunalen Wärmeplanung (KWP) für die Gemeinde Rastede

Was sind die wichtigen Aussagen der KWP?

- Übergeordnetes Ziel: Treibhausgasneutralität bis 2040 in der Gemeinde Rastede
 - → Umsetzung der notwendigen Wärmewende
- Investitionssicherheit für Bürgerschaft und Gewerbe
 - → Wirtschaftliche Wärmeversorgungslösungen
- Versorgungssicherheit durch Nutzung lokaler Energiequellen
 - → Verfügbarkeit der Wärmequellen in Zukunft

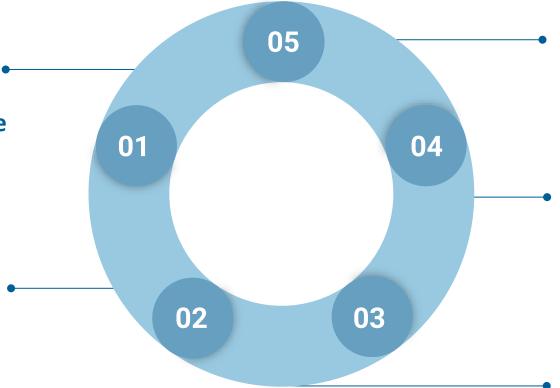
Der Wärmeplanungsprozess als Fundament für folgende Umsetzungsprojekte

Das Ergebnis der Kommunalen Wärmeplanung ist ein Transformationspfad Fazit: zur flächendeckenden Dekarbonisierung des Wärmebedarfs. Die konkrete Umsetzung des darin enthaltenden Maßnahmenkatalogs wird in darauf folgenden Umsetzungsprojekten erfolgen.

Bestandsanalyse

Zusammenfassung

Welche Daten wurden genau erhoben? Sachstand



Kommunale Daten:

- Planungskarten
- Flächennutzungspläne
- Neubaugebiete
- Konzepte

greenventory

- Wärmekataster
- Energiepotenziale
- Lastprofile
- Statistische Werte
- uvm.

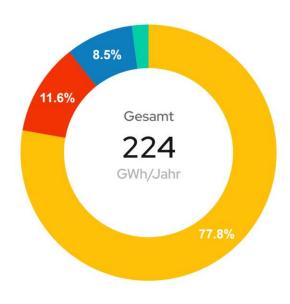
Schornsteinfeger

- Heizsysteme
- Brennstoffe
- Heizungsalter

EVUs

- Energieverbräuche
- Netzdaten
- Heizzentralen & BHKWs

Industrie & Gewerbe


- Energieverbräuche
- Abwärmedaten

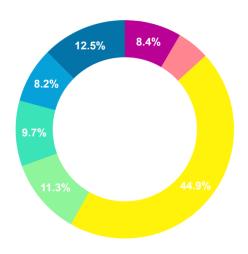
Wärmebedarf der Gemeinde Rastede

Sachstand zur Datenerhebung Absoluter Wärmebedarf (insgesamt in Anonymisiert) 0 - 0.01 MWh/Jahr 0.01 - 20 MWh/Jahr 20 - 40 MWh/Jahr 40 - 80 MWh/Jahr

Wärmebedarf

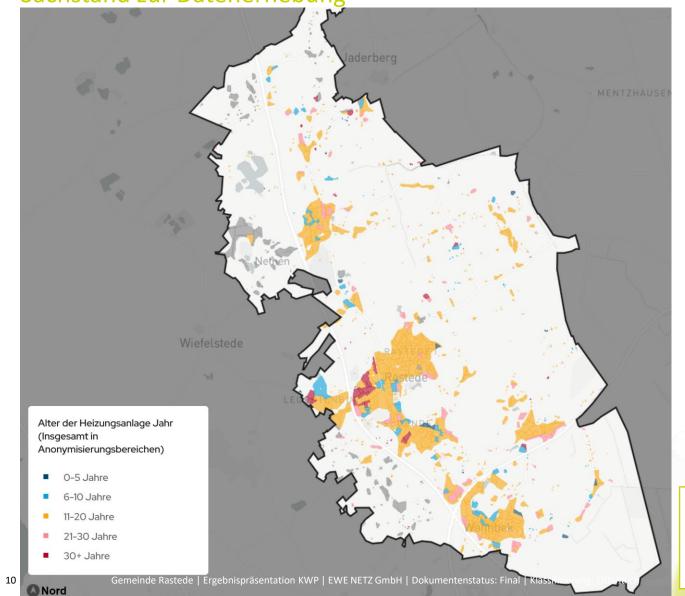
Wirtschaftssektor	Wä	rmebedarf GWh/Jahr
Privates Wohnen	77,8 %	174,6
Industrie & Produktion	11,6 %	26,1
Gewerbe, Handel, Dienstleistungen	8,5 %	19,1
Öffentlicher Dienst	2,1%	4,652
Gesamt	100%	224

80 - 160 MWh/Jahr
 160 - 320 MWh/Jahr
 320 - 640 MWh/Jahr
 640 - 1280 MWh/Jahr
 1280 - 2560 MWh/Jahr
 2560 - 100000 MWh/Jahr
 Mehr als 100000 MWh/Jahr


Baualtersklassen der Gemeinde Rastede

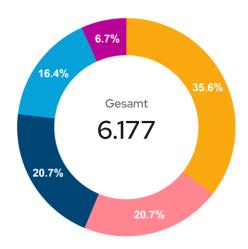
Sachstand zur Datenerhebung

Gebäudebestand


Baualter	Gebäudebestand	
■ vor 1919	8,4 %	
1919 - 1948	4,8 %	
1949 - 1978	44,9 %	
1979 - 1990	11,3 %	
1991 - 2000	9,7 %	
2001 - 2010	8,2 %	
2011 - 2019	12,5 %	
Gesamt	100%	

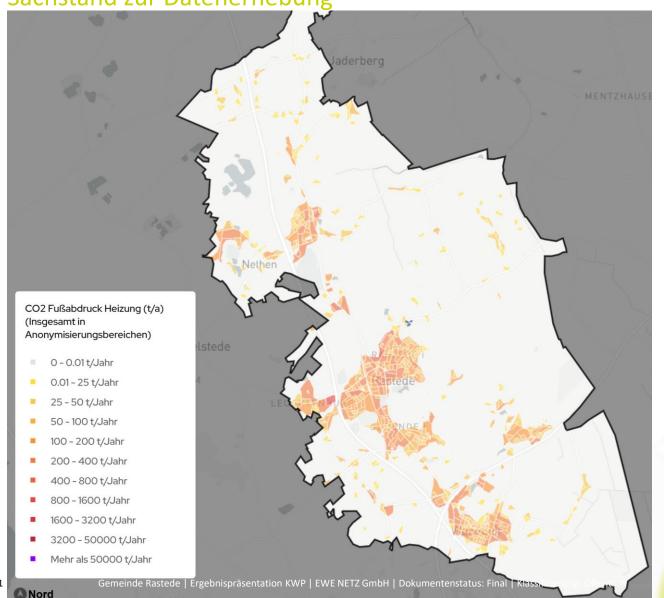
Zusammenfassung

- ca. 45 % der Baujahre 1949 1978
- Energieeffizienzklassen D bis F → 42 %


Heizungsanlagenalter der Gemeinde Rastede

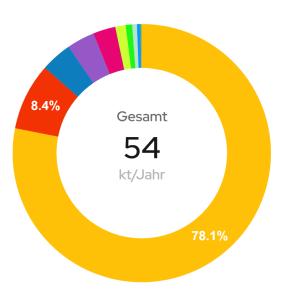
Sachstand zur Datenerhebung

Heizsysteme


Heizungsanlagenalter		Heizsysteme
11-20	35,6 %	2.197
21-30	20,7 %	1.278
■ 0-5 Jahre	20,7 %	1.277
6-10	16,4 %	1.010
■ 30+ Jahre	6,7 %	413
Unbekannt	0 %	2
Gesamt	100%	6.177

Zusammenfassung

Ca. 27 % der Heizungsanlagen in Rastede sind älter als 20 Jahre


CO₂-Emissionen der Gemeinde Rastede

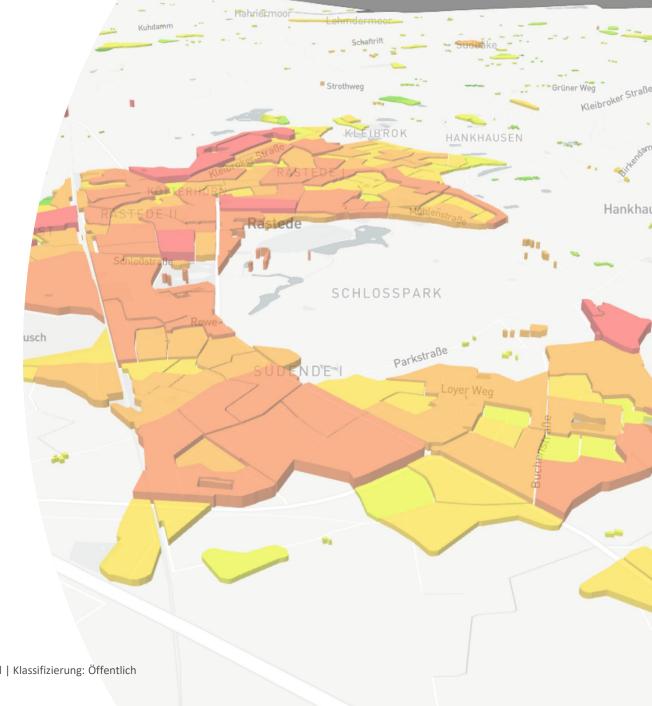
Sachstand zur Datenerhebung

Treibhausgasemissionen

Zusammenfassung

Erdgas: 45.900 t/a (84,4 %)

Heizöl: 4.434 t/a (8,2 %)


Strom: 3.509 t/a (6,4 %)

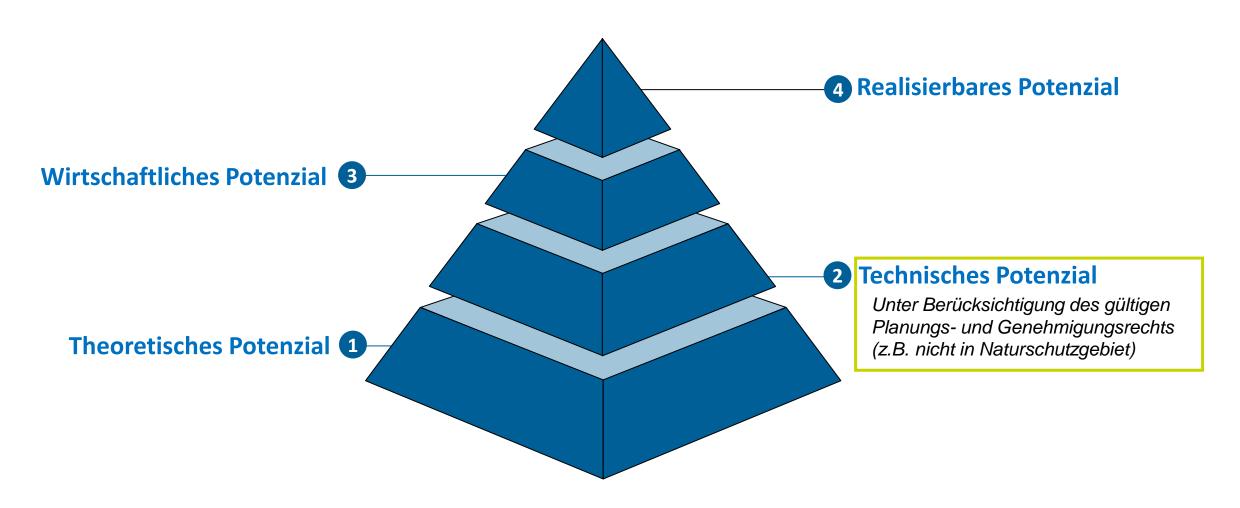
Wärmenetz: 218 t/a (0,4 %)

Biomasse: 104 t/a (0,2 %)

Fazit zur Bestandsanalyse

- Die Altersstruktur der Gebäude lässt ein deutliches Einsparpotenzial durch energetische Sanierungen vermuten (Gebäudehülle & Heizungstausch)
- Es wird überwiegend mit Erdgas geheizt ->
 Transformation zu erneuerbaren Wärmequellen notwendig
- Alter der Heizungsanlagen lässt großflächigen
 Heizungstausch in kommenden zehn Jahren erwarten
- Erste Erfahrung mit zentraler Wärmeversorgung
- Öffentliche Liegenschaften bieten Ankerpunkte für Wärmenetze, wenn in Gebieten ausreichender Wärmeabsatz erwartbar ist

Potenziale


Zusammenfassung

Potenzialdefinition

Die unterschiedlichen Potenziale

Energiepotenziale (ohne Restriktionsflächen)

Segment Wärme

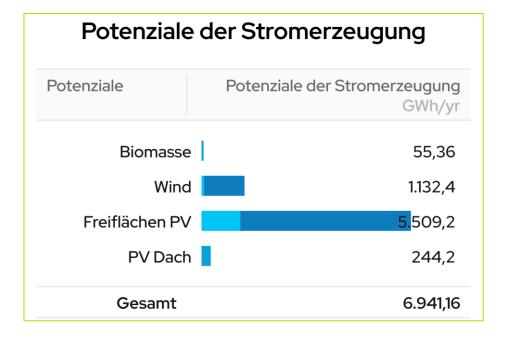
Hinweis

- Bilanzielle Darstellung
- Freiflächenpotenzial (PV, Solarthermie, etc.)
 nicht additiv betrachten

EWENETZ

Potenziale der Wärmeerzeugung		
Potenziale F	Potenziale der Wärm	neerzeugung GWh/yr
Wärmebedarf		224,4
Solarthermie (Dach)		222
Industrielle Abwärme		0
Geothermie (Kollektoren)		3.959,2
Geothermie		5.089,8
Solarthermie (Freifläche)		7.713,4
Biomasse		79,7
Luftwärmepumpen		241,3
Abwasser		0
Gesamt		17.529,8
Potenziale	Potenziale der W	ärmeerzeugi GWh/yr
Geeignet	58,4 %	10.237,8
Bedingt geeignet	23,49 %	4.117
Gut geeignet	16,83 %	2.950,6
Gesamt	100%	17.529,8

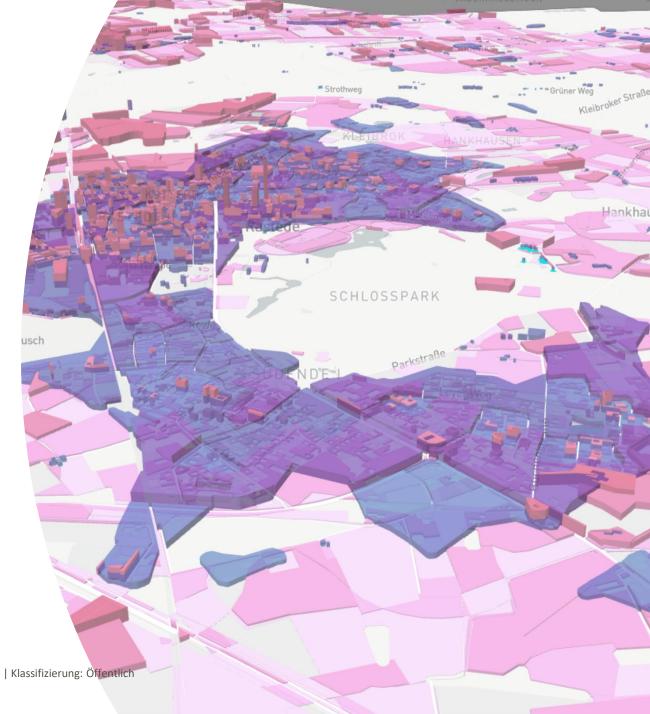
Energiepotenziale (ohne Restriktionsflächen)


EWENETZ

Segment Strom

Hinweis

- Bilanzielle Darstellung
- Freiflächenpotenzial (PV, Solarthermie, etc.)
 nicht additiv betrachten



Potenziale	Potenziale der St	tromerzeugu GWh/yr
Gut geeignet	80,11 %	5.560,56
Geeignet	4,27 %	296,2
Bedingt geeignet	15,62 %	1.084,4
Gesamt	100%	6.941,16

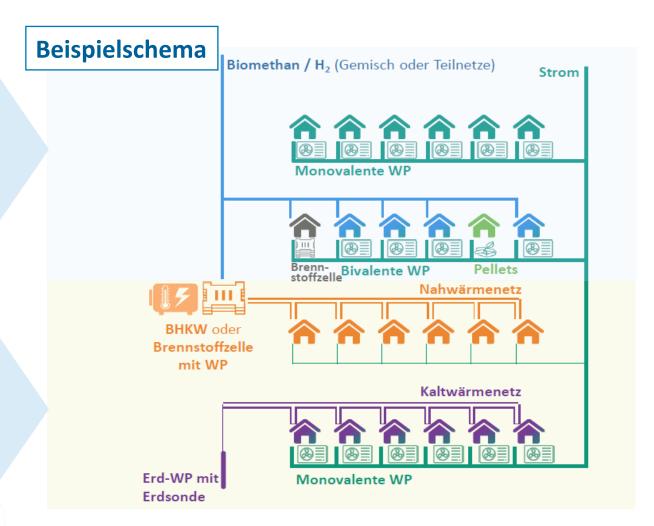
Fazit zur Potenzialanalyse

- Die Wärmeversorgung kann vollständig mit lokalen und erneuerbaren Energiequellen gewährleistet werden.
- Durch die geringe Bebauungsdichte ist der Einsatz von Luftwärmepumpen in fast allen Gebäuden möglich.
- Der erhöhte Strombedarf durch Wärmepumpen kann durch lokale Erzeugung bereitgestellt werden.
- Das Einsparpotenzial durch Sanierung wird auf ca. 55 % des Gesamtwärmebedarfs abgeschätzt.

Maßnahmen aus der Wärmeplanung

Zentrale & Dezentrale Versorgungsgebiete

Die zukünftigen Bausteine der Wärmeversorgung in der Gemeinde Rastede


Handlungsoptionen

Dezentrale Versorgung

- Lösungen sind individuell
- Verantwortung für individuelle Lösung liegt beim Gebäudeeigentümer
- ca. 27 % der Heizungen in der Gemeinde Rastede sind älter als 20 Jahre

Wärmenetze

Zentrale Wärmeversorgung mittels
 Wärmenetze können einen zentralen und
 effizienten Baustein der zukünftigen
 Wärmeversorgung darstellen

Kommunale Wärmeplanung

Begriffsdefinition

Wärmenetzeignungsgebiete:

Bereiche in denen perspektivisch die Umsetzung eines Wärmenetzes möglich ist (von heute bis 2040).

Maßnahmen:

In Anlehnung an §20 NKlimaG wird die Umsetzung von fünf Maßnahmen in den nächsten fünf Jahren verfolgt.

Identifikation von potenziellen Wärmenetzen

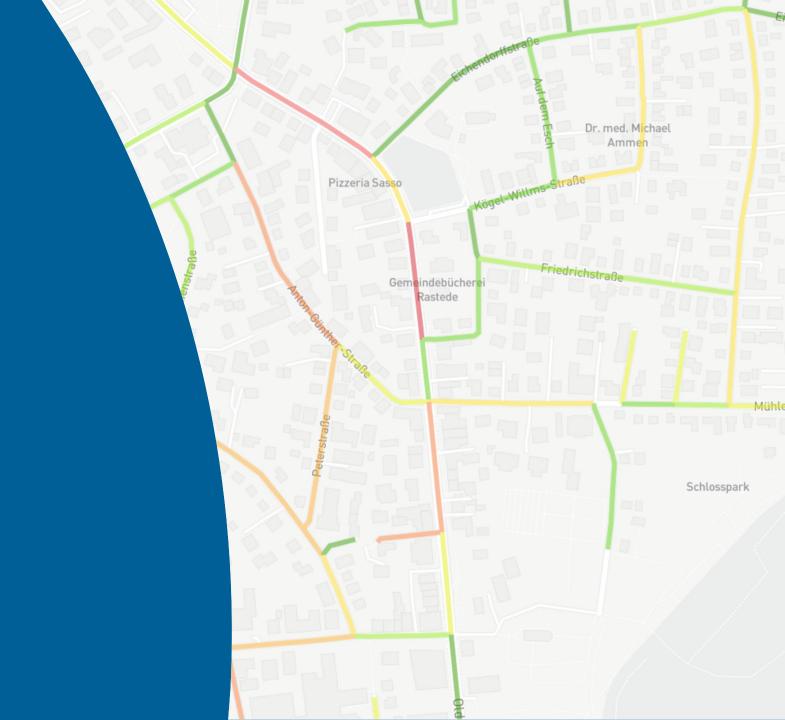
Wärmeliniendichte liefert eine Aussage zum Energiebedarf

Wärmeliniendichte

- Wärmeliniendichte [kWh/(m*a)]:
 Notwendige Wärmemenge [kWh/a] bezogen auf die Länge [m]
- Je höher die Wärmeliniendichte, um so höher ist der notwendige Energiebedarf
- 3 Szenarien mit unterschiedlichen Untergrenzen:
 - Niedriger Wärmebedarf = 2.000 kWh/(m*a)
 - Mittlerer Wärmebedarf = 3.000 kWh/(m*a)
 - Hoher Wärmebedarf = 4.000 kWh/(m*a)

Im Fokus der Wärmeplanung: Wärmenetzeignungsgebiete

Begriffsdefinition und Vorgehen


Eignungsgebiet

- Potenzielles Wärmenetzgebiet
- **Konzentration des Energiebedarfs**
 - \rightarrow Wärmeliniendichte: > 2.000 2.500 kWh/(m*a)
- Idealerweise ist eine Energiequelle gegeben
 - → Abwärme oder regenerative Energien

Einordnung

- Keine finale Entscheidung durch KWP
 - → Studie/Machbarkeitsstudie folgt auf KWP-Maßnahme
 - Aktuell: hohe Investitionskosten / niedrige Gaspreise
 - → Wirtschaftlichkeit häufig nicht kurzfristig gegeben
 - → Keine rechtliche Bindung

Dezentrale Versorgung

Maßnahmenübersicht

Beispielhafte Maßnahmen im Wärmeplan

Kosten

Förderung

Vorstudie Wärmenetz Eignungsgebiet "XXX"

-

BEW-Förderung 50 % möglich

Ausweisung von Sanierungsgebieten

Dekarbonisierung kommunaler Gebäude

Runder Tisch zum Thema Energie und Industrievernetzung

- Wichtiger Ansatz, um Wärmeverbrauch zu senken
- Koordinierte Modernisierung
- Optimierung der öffentlichen Gebäude durch energetische Normen
- Ziel: Senkung des Energieverbrauchs
- Förderung der Zusammenarbeit zwischen kom. Energieversorgern und lokaler Industrie

ca. 50 000 €

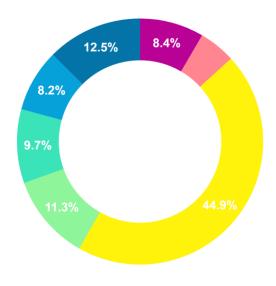
zu überprüfen

zu überprüfen

Exkurs: Dezentrale Wärmeversorgung

Die Lösung für den Großteil des Gemeindegebietes

Hintergrund


Die Realisierung eines Wärmenetzes ist technisch oder wirtschaftlich nicht umsetzbar? Dann bedarf es einer individuellen Wärmeerzeugung je Gebäude: dezentrale Wärmeversorgung

Dezentrale Optionen

- Wärmepumpe
- Biomassenkessel (Pelletofen)
- Solarthermie
- Hybride Heizungssysteme
- etc.
- → Einsatz Wärmepumpe erfordert wahrscheinlich keine umfangreiche Sanierung ab ca. Baujahr 1996 (1995: Umsetzung 3. Wärmeschutzverordnung; ca. 18 % der Gebäude in der Gemeinde Rastede)

Gebäudebestand

Baualter	Gebäudebestand
vor 1919	8,4 %
1919 - 1948	4,8 %
1949 - 1978	44,9 %
1979 - 1990	11,3 %
1991 - 2000	9,7 %
2001 - 2010	8,2 %
2011 - 2019	12,5 %
Gesamt	100%

Dezentrale Wärmeversorgung

Auszug Auswertung digitaler Zwilling

EWENETZ

Auswertungen "Digitaler Zwilling"

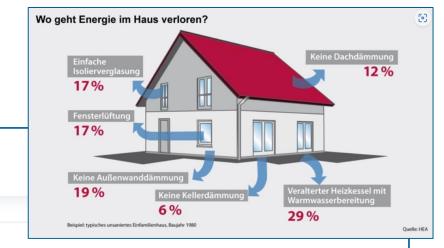
 Systematische Betrachtung und Auswertung sämtlicher relevanter Parameter für die Bewertung und Ausweisung von Handlungsoptionen

Wärmepumpenpotential

- Potential ausgelegt nach Wärmebedarf
- Aufstellorte anhand von Abstand zum Nachbargrundstück
- Einhaltung der Schallschutzvorgaben

Maßnahmen

- Planung treffender Kommunikationsmaßnahmen
- Nachhaltung der Entwicklungen


Dezentrale Wärmeversorgung

Exkurs: Sanierung

Sanierung: Elementarer Baustein

- Jede kWh, die nicht "verbraucht wird", muss nicht aufwändig erzeugt werden.
- Um Klimaziele zu erreichen ist eine Sanierungsquote von 2 % erforderlich (DIW).
- Gemeinde Rastede: 58 % der Gebäude wurden vor 1979 gebaut (erste Vorgaben bzgl. Dämmung durch Wärmeschutzverordnung 1977)

BBB BundesBauBlatt

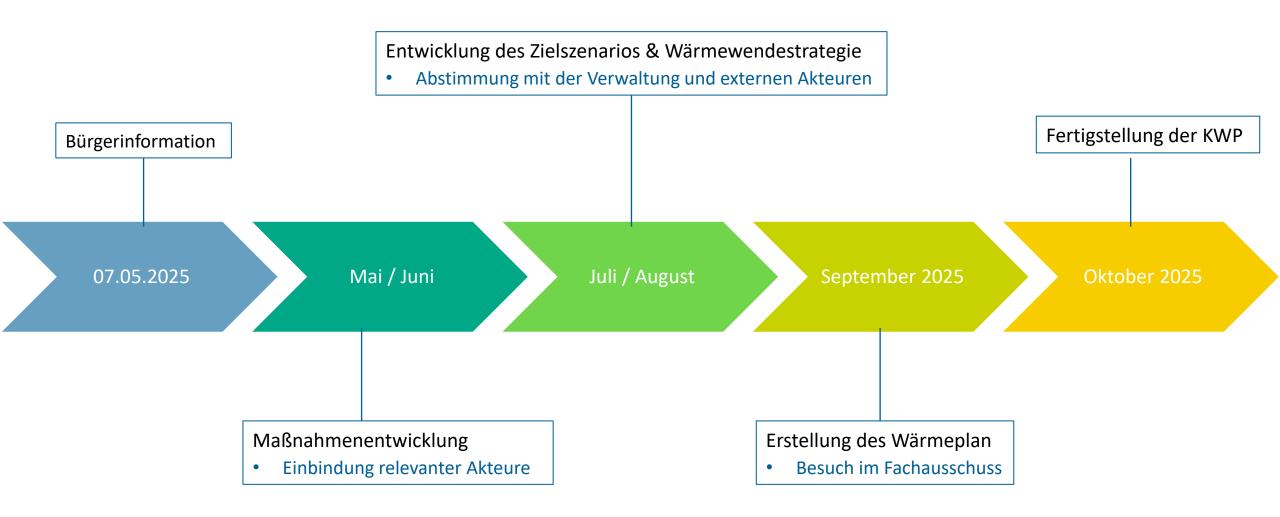
"Im Schneckentempo": Sanierungsquote 2023 unter einem Prozent

12.10.2023

Die Quote für Sanierungen im deutschen Gebäudebestand liegt aktuell bei nur 0,83 %. Dies hat eine neue Marktdatenstudie der B+L Marktdaten Bonn im Auftrag des Bundesverbands energieeffiziente Gebäudehülle (BuVEG) ergeben. Damit wird die bisherige Annahme von Politik und Branche, die Quote für energetische Sanierungen liege bei 1 %, was als allgemein bereits als unzureichend bewertet wird, noch nach unten korrigiert. Schon im Jahr 2022 lag die ermittelte Sanierungsquote bei 0,88 %, die Entwicklung zum Vorjahr ist somit absteigend.

Ouelle: Bundesbaublatt 2023

Ausblick


Was sind die nächsten Schritte?

Weitere Schritte

Wie geht es weiter?

Vielen Dank

Für Rückfragen stehen wir Ihnen gerne zur Verfügung